1dLOS

PROTECTING YOUR NETWORK

Richard Johnson
ToorCon San Diego 2016

Go Speed Tracer

Richard Johnson
ToorCon San Diego 2016

Introduction

e Richard Johnson Talos Vulndev
— Research Manager — Third party vulnerability research
— G T I 170 bug finds in last 12 months
15CO 1al0s — Microsoft
* Team — Apple
— Aleksandar Nikolich ~ Oracle
. . — Adobe
— Ali Rizvi-Santiago — Google
— Marcin Noga — IBM, HP, Intel
_ e Berfis — 7zip, libarchive, NTP
— Security tool development
— Tyler Bohan

* Fuzzers, Crash Triage
— Yves Younan — Mitigation development
e Special Contributor * FreeSentry

— Andrea Allevi

TdLO5S

Introduction

* Agenda
— Tracing Applications
— Guided Fuzzing
— Binary Translation
— Hardware Tracing

 Goals
— Understand the attributes required for optimal guided fuzzing
— Identify areas that can be optimized today
— Deliver performant and reusable tracing engines

TadlLO5S

Applications

 Software Engineering
— Performance Monitoring
— Unit Testing

 Malware Analysis
— Unpacking
— Runtime behavior
— Sandboxing

* Mitigations
— Shadow Stacks
— Memory Safety checkers

Applications

* Software Security

— Corpus distillation
 Minimal set of inputs to reach desired conditions

— QGuided fuzzing

 Automated refinement / genetic mutation

— Crash analysis

e Crash bucketing
 Graph slicing
* Root cause determination

— Interactive Debugging

Tracing Engines

 OS Provided APIs
— Debuggers

* ptrace
 dbgeng
* signals
— Hook points
* Linux LTT(ng)
e Linux perf
* | Windows Nirvana

* | Windows AppVerifier
* |Windows Shim Engine

— Performance counters

* Linux perf
e Windows PDH

Check out Alex lonescu’s
RECON 2015 talk

Tracing Engines

Binary Instrumentation

— Compiler plugins
e gcc-gcov
llvm-cov

— Binary translation
* Valgrind
DynamoRIO
Pin
Dyninst
Frida and others

Tracing Engines

 Native Hardware Support
— Single Step / Breakpoint
— Intel Branch Trace Flag
— Intel Last Branch Record
— Intel Branch Trace Store

— Intel Processor Trace
— ARM CoreSight

TdLO5S

Guided Fuzzing

Evolutionary Testing

Early work was whitebox testing
Source code allowed graph analysis prior to testing
Fitness based on distance from defined target

Complex fitness landscape
— Difficult to define properties that will get from A to B

Applications were not security specific
— Safety critical system DoS

Guided Fuzzing

Incrementally better mutational dumb fuzzing
Trace while fuzzing and provide feedback signal

Evolutionary algorithms
— Assess fitness of current input
— Manage a pool of possible inputs

Focused on security bugs

Sidewinder

e Embleton, Sparks, Cunningham 2006
* Features

I
e crossover, mutation, fitness |
I
I

1 0 0
S =P xBx =P xaAax=P xabBbax === xabCbax

PZ

 Analyzes probability of path taken by sample

xabdbax

 Reduced overhead by focusing on subgraphs

Sidewinder

* Embleton, Sparks, Cunningham 2006
 Contributions

e (QObservations

Evolutionary Fuzzing System

Jared DeMott 2007

Features

— Block coverage via Process Stalker

* Windows Debug API
Intel BTF

— Stored trace results in SQL database
Lots of variables required structured storage

— Traditional genetic programming techniques

 Code coverage + diversity for fitness
* Sessions

Pools
* Crossover

Mutation

Evolutionary Fuzzing System

e Jared DeMott 2007

* Contributions
— First opensource implementation of guided fuzzing

— Evaluated function vs block tracing

 For large programs found function tracing was equally effective
e Likely an artifact of doing text based protocols

e (QObservations

— Academic
 Approach was too closely tied to traditional genetic algorithms
 Not enough attention to performance or real world targets
* Only targeted text protocols

Amercian Fuzzy Lop

e Michal Zalewski 2013
— Bunny The Fuzzer 2007

* Features
— Block coverage via compile time instrumentation

— Simplified approach to genetic algorithm

Edge transitions are encoded as tuple and tracked in global map
Includes coverage and frequency

— Uses variety of traditional mutation fuzzing strategies
— Dictionaries of tokens/constants

— First practical high performance guided fuzzer

— Helper tools for minimizing test cases and corpus

— Attempts to be idiot proof

TdLO5S

Amercian Fuzzy Lop

american fuzzy lop 0.47b (readpng)

e Michal Zalewski 2013
— Bunny The Fuzzer 2007

e Contributions

— Tracks edge transitions
* Not just block entry

— process timing
run time : 0 days, 0 hrs, 4 min, 43 sec
Tast new path : 0 days, O hrs, 0 min, 26 sec
last uniqg crash : none seen yet
Tast uniq hang : 0 days, O hrs,
— cycle progress —
now processing : 38 (19.49%)
paths timed out : 0 (0.00%)
— stage progress
now trying : interest 32/8
stage execs : 0/9990 (0.00%)
total execs : 654k
exec speed : 2306/sec
- fuzzing strategy yields

overall results -
cycles done : 0
total paths : 195
uniq crashes : 0
uniq hangs : 1
- map coverage - T
map density : 1217 (7.43%)
count coverage : 2.55 bits/tuple
findings in depth
favored paths : 128 (65.64%)
new edges on : 85 (43.59%)
total crashes : 0 (0 unique)
total hangs : 1 (1 unique)

1 min, 51 sec

path geometry
3

bit flips 88/14.4k, 6/14.4k, 6/14 4k levels :
byte flips : 0/1804, 0/1786 1/1750 pending : 178
. Global coverage ma arithmetics - 31/126k, 3/45.6k, 1/17.8k pend fav : 114
known ints : 1/15.8k, 4/65.8k, 6/78.2k imported : O
X X havoc : 34/254k, 0/0 . variable : 0
° Generatlon tracklng trim : 2876 B/931 (61.45% 9a1n) latent : O

— Fork server
* Reduce fuzz target initialization

— Persistent mode fuzzing
— Builds corpus of unique inputs
reusable in other workflows

TadlLO5S

Amercian Fuzzy Lop

Michal Zalewski 2013
— Bunny The Fuzzer 2007

Observations
— KISS works when applied to guided fuzzing

— Performance top level priority in design

Source instrumentation can't be beat
Evolutionary system hard to beat without greatly increasing complexity / cost

— Simple to use, finds tons of bugs

— Fostered a user community
Developer contributions somewhat difficult

— Current state of the art due to good engineering and feature set

— Only mutational fuzzer system to have many third-party contributions

Binary support via QEMU and Dyninst
More robust compiler instrumentations, ASAN support

Parallelization, client/server targeting Ta I_DS

honggfuzz

Robert Swiecki 2010
— Guided fuzzing added in 2015

Features

— Block coverage

Hardware performance counters
ASanCoverage

— Bloom filter for trace recording
— User-supplied mutation functions
— Linux, FreeBSD, OSX, Cygwin support

Contributions
— First guided fuzzer to focus on hardware tracing support

Observations

— Naive seed selection for most algorithms, only the elite survive (OTTES)
Some modes use bloom filter

— Easy to extend, active development

T4dLO5

Choronzon

* Features
— Brings back specific genetic programming concepts

— Contains strategies for dealing with high level input structure

Chunk based
Hierarchical
Containers

— Format aware serialization functionality
— Uses DBI engines for block coverage (PIN / DynamoRIO)
— Attempts to be cross-platform
 Contributions
— Reintroduction of more complex genetic algorithms
— Robust handling of complex inputs through user supplied serialization routines

e (QObservations
— Performance not a focus

T4dLO5

Honorable mentions

* autodafe
— Martin Vuagnoux 2004
— First generation guided fuzzer using pattern matching via APl hooks

 Blind Code Coverage Fuzzer
— Joxean Koret 2014

— Uses off-the-shelf components to assemble a guided fuzzer

radamsa, zzuf, custom mutators
drcov, COSEINC RunTracer for coverage

* covFuzz
— Atte Kettunen 2015
— Simple node.js server for guided fuzzing
— custom fuzzers, ASanCoverage

TdLO5S

Guided Fuzzing

* Required

— Fast tracing engine
Block based granularity

— Fast logging

Memory resident coverage map

— Fast evolutionary algorithm
Minimum of global population map, pool diversity

e Desired
— Portable
— Easy to use
— Helper tools
— Grammar detection

 AFL and Honggfuzz still most practical options

Binary Translation

Binary Translation

* Binary translation is a robust program modification technique
— JIT for hardware ISAs

* General overview is straightforward
— Copy code to cache for translation
— Insert instructions to modify original binary
— Link blocks into traces

e Performance comes from smart trace creation
— Originally profiling locations for hot trace

— Early optimizations in Dynamo from HP

Next Executing Tail
Traces begin at backedge or other trace exit

— Ongoing optimization work happens here
VMware - Early Exit guided

Binary Translation

 Advantages
— Supported on most mainstream OS/archs
— Can be faster than hardware tracing
— Can easily be targeted at certain parts of code
— Can be tuned for specific applications

 Disadvantages

— Performance overhead
* |Introduces additional context switch

— ISA compatibility not guarenteed
— Not always robust against detection or escape

TdLO5S

Valgrind

Obligatory slide
Lots of deep inspection tools
VEX IR is well suited for security applications

Slow and Linux only, DynamoRIO good replacement

Many cool tools already exist
— Flayer
— Memgrind

Pin

 “DBT with training wheels”

e Features

— Trace granularity instrumentation
Begin at branch targets, end at indirect branch

— Block/instruction level hooking supported
— Higher level C++ APl w/ helper routines
— Closed source

 Observations
— Delaying instrumentation until trace generation is slower
— Seems most popular with casual adventurers
— Limited inlining support
— Less tuning options
— Cannot observe blocks added to cache so ‘hit trace’ not possible Ta LC’S

Pin
Example

VOID Trace(TRACE trace, VOID *v)
{
for (BBL bbl = TRACE BblHead(trace); BBL _Valid(bbl); bbl
= BBL_Next (bbl))
{
BBL _InsertCall(bbl, IPOINT_ANYWHERE, AFUNPTR(basic_block hook),
IARG_FAST_ANALYSIS CALL, IARG _END);

DynamoRIO

“A connoisseur's DBT”

Features

— Block level instrumentation
Blocks are directly copied into code cache

— Direct modification of IL possible

— Portable

Linux, Windows, Android
x86/x64, ARM

— C API / BSD Licensed (since 2009)

Observations
— Much more flexible for block level instrumentation
— Performance is a priority, Windows is a priority

— Powerful tools like Dr Memory

Shadow memory, taint tracking
Twice as fast as Valgrind memcheck

TdLO5S

DynamoRIO

* Example

event basic block(void *drcontext, void *tag, instrlist t *bb,
bool for trace, bool translating)
{
instr_t *instr, *first = instrlist first(bb);
uint flags;
/* Our inc can go anywhere, so find a spot where flags are dead. */
for (instr = first; instr != NULL; instr = instr_get next(instr))
{
flags = instr_get arith flags(instr);
/* OP_inc doesn't write CF but not worth distinguishing */
if (TESTALL(EFLAGS WRITE_6, flags) && !TESTANY(EFLAGS READ 6,
flags))
break;

DynamoRIO

Example

if (instr == NULL)
dr_save_arith flags(drcontext, bb, first, SPILL SLOT 1);

instrlist meta preinsert(bb,
(instr == NULL) ? first : instr,
INSTR_CREATE_inc(drcontext,
OPND_CREATE_ABSMEM((byte *)&global count, OPSZ 4)));

if (instr == NULL)
dr_restore_arith flags(drcontext, bb, first, SPILL SLOT 1);
return DR_EMIT_ DEFAULT;

Dynlnst

e “Static rewriting IS possible!”

e Features

— Static rewriting support

* Dynamically linked binaries only
* Eliminates issues with instruction cache misses common to DBT engines

— Function level analysis
* Tools must manually walk Dyninst provided CFG to instrument blocks

— Modular C++ APl / LGPL

e (QObservations

— Fastest binary instrumentation out there

— Development is slow
* Patches we sent in for PE relocation support still not merged

— Building Dyninst is NP-Hard

* Use my Dockerfile on github.com/talos-vulndev/afl-dyninst

Dynlnst

* Example

bool insertBBCallback(BPatch binaryEdit * appBin, BPatch function * curFunc,
char *funcName, BPatch function * instBBIncFunc,int *bbIndex)

{

unsigned short randID;

BPatch_ flowGraph *appCFG = curFunc->getCFG ();

BPatch Set <BPatch basicBlock *> allBlocks;

BPatch Set <BPatch basicBlock *>::iterator iter;

for (iter = allBlocks.begin (); iter != allBlocks.end (); iter++)

{
unsigned long address = (*iter)->getStartAddress ();

randID = rand() % USHRT_MAX;

BPatch Vector <BPatch_snippet *> instArgs;
BPatch_constExpr bbId (randID);
instArgs.push_back (&bbId);

Dynlnst

* Example

BPatch_point *bbEntry = (*iter)->findEntryPoint();
BPatch_funcCallExpr instIncExpr (*instBBIncFunc, instArgs);
BPatchSnippetHandle *handle =
appBin->insertSnippet (instIncExpr, *bbEntry, BPatch_callBefore,
BPatch lastSnippet);
(*bbIndex)++;
}

return true;

Tuning Binary Translation

Only instrument indirect branches

Delay instrumentation until input is seen

Only instrument threads that access the data

Move instrumentation logic to analysis routines

— Some APIs provide IF-THEN-ELSE analysis with optimization

Avoid trampolines
— Be aware of code locality and instruction cache
— Directly inline instructions, modify AST if possible

Inject a fork server if repeatedly executing DBT
— See our turbotrace tool

Hardware Tracing

CPU Event Monitoring

Modern CPUs contain Performance Monitoring Units (PMU)

Model Specific Registers (MSR) used for configuration
— Requires privileged execution (kernel or better) to access

Types

— Event Counters
Polled on-demand

— Event Sampling (non-precise)
Interrupts triggered when counters hit modulus value

— Precise Event Sampling (PEBS)

Uses 'Debug Store'
Physical memory buffers
Interrupt when full

Use Linux perf / pmu-tools to experiment

Interrupt Programming

Interrupts - low level messaging system for system devices

— CPU Exceptions
GPF, SINGLE_STEP

— Hardware Interrupts

Memory mapped or IRQ based
All Device I/0

— Software Interrupts

System calls (int 0x80)
Breakpoints

OS/hypervisor drivers required to configure interrupt handlers
— Privileged registers or interrupt vector tables

Interrupt Programming

Interrupt Service Routines (ISR)
— Registered by operating systems and drivers as callbacks

CPU checks interrupt flag (IF) register after each instruction
— cli and sti instructions control whether IF is checked

CPU indexes the interrupt vector table to find appropriate handler
— Context stored / restored while servicing interrupt

Historically Familiar Interrupts:
— int1 -Single Step (TF)
— int3 -Single opcode, specifically designed for debugging
— int 10h - Any Demosceners?
— int 24h - DOS Critical Error Handler

Who remembers:

Interrupt Programming

* Programmer checklist

— Memory must not be swapped
— Use static variables if necessary

— Must wrap functions with assembly
disable interrupts

push all registers

call interrupt handler

pop all registers

iretd

Its a Trap

* Single Stepping
— Enabled by setting the Trap Flag
— After each instruction, CPU checks flag and fires exception if enabled

— Accessible from userspace

 Branch Trace Flag
— Modifies single step behavior to trap on branch
— Single flag in IA32_DEBUGCTL MSR
— Requires kernel privileges to write to MSR
— Windows includes a mapping from DR7 to set MSR

— SS/BTF traps are slooooooooow, not applicable for vulnerability research

TdLO5S

IA32 DEBUGCTL Register

— I\/ISR Address 0x1d9

LBR [O] - Enable Last Branch Record mechanism
e BTF[1] - when enabled with TF in EFLAGS does single stepping on branches
TR [6] - enables Tracing (sending BTMs to system bus)
e BTS [7] - enables sending BTMs to memory buffer from system bus
 BTINT [8] - full buffer generates interrupt otherwise circular write
e BTS_OFF_OS [9] - does not count for priv. level 0
e BTS_OFF _USR [10] - does not count for priv. level 1,2,3
e FRZ_LBRS_ON_PMI [11] - freeze LBR stack on a PMI
e FRZ_PERFMON_ON_PMI [12] - disable all performance counters on a PMI
e UNCORE_PMI_EN [13] - uncore counter interrupt generation
e SMM _FRZ [14] - event counters are frozen during SMM

Branch Trace Store

First generation hardware
branch tracing via PMU

Allows configurable memory
buffer for trace storage

MSR _IA32 DS AREA MSR
defines storage location

DS _AREA_RECORD stored for
each branch

struct DS_AREA {

};

uesd
uesd
uesd
uesd
uesd
uesd
ued
ued
ued

bts_buffer_base;
bts_index;
bts_absolute_maximum;
bts_interrupt_threshold;
pebs buffer_base;

pebs _index;

pebs absolute_maximum;
pebs_interrupt_threshold;
pebs_event_reset[4];

struct DS_AREA_RECORD {
flags;

uesd
uesd
uesd
uesd
uesd
uesd
uesd

};

ip;

regs[16];
status;
dla;

dse;

lat;

Branch Trace Store

Instruction Pipeline

Last Branch Record
(LBR)

CPU

Branch From Branch To

LBR Stack

32 Model 5|u't'ir‘|L' Registers(MSKs)

Branch Trace Store
(BTS)

System Bus

Tracing
(TR)

DS Save Area

L2 Cache

Branch Trace Store

Branches in LBR registers spill to DS_AREA
Interrupts only when buffer is full

Steps to enable BTS
— Allocate memory and set MSR_1A32 DS AREA
— Add interrupt handler to IDT

— Register interrupt vector with APIC
apic_write(APIC_LVTPC, pebs_vector);

— Select events with MSR_1A32 EVNTSELO
e EVTSEL_EN | EVTSEL_USR | EVTSEL_OS

— Enable PEBS mode with MSR _1A32 PEBS ENABLE
— Enable CPU perf recording with MSR_1A32_ GLOBAL_ CTRL

Significantly faster than BTF
Still impractical for high speed tracing

Intel Processor Trace

 Next generation hardware tracing support
— Introduced in Broadwell/Skylake architecture
— Per-hardware tracing thread

 Goal: full system branch tracing with 5-15% overhead

* Software support available in
— Linux 4.1+ perf subsystem
— Standalone Linux reference driver simple-pt

— Intel VTune / System Studio™*
e Remote debugging only

— Talos IntelPT driver!
 Windows localhost high speed hardware tracing FTW!

Intel Processor Trace

Features
— Can trace *SMM, HyperVisor, Kernel, Userspace [CPL -2 to 3]

— Logs directly to physical memory

* Bypasses CPU cache and eliminates TLB cache misses
* Can be a contiguous segment or a set of ranges
* Ringbuffer snapshot or interrupt mode supported

— Minimal log format

* One bit per conditional branch

* Onlyindirect branches log dest address

* Interrupts log source and destination

* Decoding log requires original binaries and memory map

— Filter logging based on CR3
— Linux can automatically add log to coredump
— GDB Support

Intel Processor Trace

90+ pages in Intel
Software Developer
\ERELS

Randomly flipping
bits doesn’t work
here ®

Check with CPUID
EAX = 0x14 - Intel Processor Trace

EBX

Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.

Bit 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.

Bit 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs
across warm reset.

Bit 03: If 1, Indicates support of MTC timing packet and suppression of COFl-based packets.

Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.

Bit 02: If 1, Indicates support of Single-Range Output scheme.

Bit 03: If 1, Indicates support of output to Trace Transport subsystem.

Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base
component

Packet Generation (ECX = 1)

EAX

Bits 2:0: Number of configurable Address Ranges for filtering.
Bit 31:16: Bitmap of supported MTC period encodings

Bits 15-0: Bitmap of supported Cycle Threshold value encodings
Bit 31:16: Bitmap of supported Configurable PSB frequency encodings

TdLO5S

Intel Processor Trace (for programmers)

 Hardware support detection

— CPUID with leaf Ox7 indicates support for Intel PT

— |If supported, CPUID with leaf O0x14 can return the supported PT features
 Trace Record Filtering

— Code Privileged Level (CPL) - kernel vs userspace

— PML4 Page Table — single process / CR3 (page-table) filtering

— Instruction Pointer — up to 4 ranges of addresses can be specified
 Log Output Configuration

— Single range

— Table of Physical Addresses (ToPA)

TdLO5S

Intel Processor Trace (for programmers)

Single Buffer Trace Logging
— Circular or Interrupt modes (Hardware logging support)
— Reserve memory — MmAllocateContiguousMemory (Windows Drivers)

— Set the proper MSRs
« MSR_IA32_RTIT_OUTPUT_BASE
MSR_IA32_RTIT_OUTPUT_MASK_PTRS

— Start the Tracing setting the “TraceEn” flag in the control register
— Processor logs to in a circular-manner unless interrupt flag configured

TdLO5S

Intel Processor Trace (for programmers)

 Table of Physical Address (ToPA) Trace Logging
— For large traces, non-contiguous physical memory must be used
— ToPA is compatible with Windows Memory Descriptor List (MDL)

— MDL is a Windows data structure for tracking physical->linear mappings
— ToPA is compatible with Windows MDL data structure!

// Grab the physical address:
PHYSICAL ADDRESS physAddr = MmGetPhysicalAddress(lpBuffVa);
perCpuData.u.Simple.lpTraceBuffPhysAddr = (ULONG_PTR)physAddr.QuadPart;

// Allocate the relative MDL

PMDL pPtMdl = IoAllocateMdl(lpBuffVa, (ULONG)perCpuData.qwBuffSize, FALSE, FALSE, NULL);
if (pPtMdl) perCpuData.pTraceMdl = pPtMdl;

Intel Processor Trace

Outside
Inside traced program traced Execution Trace Alignment
program

Processor Trace Packets

Complex log format - decode with opensource libipt library!

Intel Processor Trace (for programmers)

 Packet Types
— Packet Stream Boundary (PSB)

Heartbeat packet generated at regular intervals (configurable)

— Paging Information (PIP)
Notifcation of CR3 Page Table changes

— Timing (TSC, MTC & CYC)

Useful for wall-clock comparisons or synchronization of logs across CPU threads

— Control Flow (TNT, TIP, FUP)

TNT — Taken/Not-Taken for conditional branches
TIP — Taken IP address for indirect branches
FUP — Flow Update

Intel Processor Trace

PT packet log, binaries, and software runtime data are used
to reconstruct the precise execution flow

PT packet log
(per logical processor)

Configure &
enable Intel PT

Ring0 Agent

(0S, VMM, BIOS, Runtime data, including:
Driver, ...) * Map linear-address to image files
* Map CR3 value to application
* Log module load/unload and JIT info

Intel PT

Intel PT-
Software
enabled Tools

Decoder

Il

Binary
Image Files

Intel Processor Trace

How to use: Linux perf tools (apt: linux-tools-common)

[Kernel PMU event]

$ perf record -e intel pt//u date
Sun Oct 11 11:35:07 EDT 2015
perf record: Woken up 1 times to write data]
perf record: Captured and wrote 0.027 MB perf.data]

perf report

Samples: 1 of event 'instructions:u'’
Event count (approx.): 157207

Overhead Command Shared Object Symbol

100.00% date libc-2.21.s0 [.] _nl_intern_locale_data
|
---_nl_intern_locale_data
_nl_load_locale_from_archive
_nl_find_locale
setlocale

Intel Processor Trace

e How to use: simple-pt reference driver

% sptcmd -c tcall taskset -c 0 ./tcall
cpu O offset 1027688, 1003 KB, writing to ptout.@

Wrote sideband to ptout.sideband
% sptdecode --sideband ptout.sideband --pt ptout.@ | less
DELTA INSNs OPERATION

[+ 1] _dl _aux_init+436
[+ 6] __libc_start_main+455 -> _dl _discover_osversio

[+ 13] _ libc_start_main+446 -> main
[+ 9] main+22 -> f1

[+ 4] f1+9 -> f2

[+ 2] f1+19 -> f2

[+ 5] main+22 -> f1

[+ 4] f1+9 -> f2

[+ 2] f1+19 -> f2

[+ 5] main+22 -> f1

Intel Processor Trace

e Talos IntelPT driver

struct PER_PROCESSOR_PT DATA {

LPVOID lpTraceBuffVa; // + 0x00 - VA Pointer to a contiguous memory buffer
ULONG_PTR 1lpTraceBuffPhysAddr; // + 0x08 - The physical address of the contiguous memory
buffer
DWORD dwBuffSize; // + 0x10 - The physical buffer size
ULONG_PTR lpTargetProcCr3; // + 0x18 - The process to monitor CR3
}s5

TdLO5S

Intel Processor Trace

Talos IntelPT driver

struct INTEL_PT_CAPABILITIES {

BOOLEAN

BOOLEAN
BOOLEAN

BOOLEAN

BOOLEAN
BOOLEAN

bCr3Filtering : 1;

bConfPsbAndCycSupported :

bIpFiltering : 1;
bMtcSupport : 1;

bTopaOutput : 1;
bTopaMultipleEntries :

1;

1;

//
//
//
//
//
//
//
//
//

[0] - CR3 Filtering Support (Indicates that

IA32 RTIT_CTL.CR3Filter can be set to 1)

[1] - Configurable PSB and Cycle-Accurate Mode

[2] - IP Filtering and TraceStop supported, and
Preserve Intel PT MSRs across warm reset

[3] - IA32_RTIT_CTL.MTCEn can be set to 1, and MTC
packets will be generated (section 36.2.5)

[4] - Utilize the ToPA output scheme

[5] - ToPA tables maximum allowed (MaskOrTableOffset)

TadlLO5S

Intel Processor Trace

e Talos IntelPT driver

BOOLEAN bSingleRangeSupport : 1; // [6] - Single-Range Output Supported
BOOLEAN bTransportOutputSupport : 1; // [7] - Output to Trace Transport Subsystem Supported
// (Setting IA32 RTIT_CTL.FabricEn to 1 is supported)

BOOLEAN bIpPcksAreLip : 1; // [8] - IP Payloads are LIP

BYTE numOfAddrRanges; // + 0x01 - Number of Address Ranges

SHORT mtcPeriodBmp; // + 0x02 - Bitmap of supported MTC Period Encodings

SHORT cycThresholdBmp; // + 0x04 - Bitmap of supported Cycle Threshold values

SHORT psbFreqgBmp; // + 0x06 - Bitmap of supported Configurable PSB
Frequency encoding

};

TadlLO5S

Intel Processor Trace

e Talos IntelPT driver

// Write the target CR3 value
__writemsr(MSR_IA32 RTIT_CR3_MATCH, targetCr3);

// Start tracing:

rtitCtlDesc.Fields.CR3Filter = 1;

rtitCtlDesc.Fields.FabricEn = 0;

rtitCtlDesc.Fields.Os = 0;

rtitCtlDesc.Fields.User = 1; // Trace the user mode process
rtitCtlDesc.Fields.ToPA = 0; // We use the single-range output scheme
rtitCtlDesc.Fields.BranchEn = 1;
//if (ptCap.bMtcSupport) {

// rtitCtlDesc.Fields.MTCEn
// rtitCtlDesc.Fields.MTCFreq
//}

rtitCtlDesc.Fields.TSCEn = 1;
rtitCtlDesc.Fields.TraceEn = 1; // Switch the tracing to ON dude :-)
__writemsr(MSR_IA32 RTIT_CTL, rtitCtlDesc.All);

1;
= 10;

TadlLO5S

Intel Processor Trace

Talos IntelPT driver

C:\code\intelpt>instdrv.exe /I windowsptdriver.sys
C:\code\intelpt>testintelpt.exe c:\windows\system32\notepad.exe

C:\code\intelpt>..\libipt\ptdump pt_dump.bin

00000000000006€8
00000000006 e
0000000000000708
000000000000070C
0000000000000716

0000000000V CeOd
0000000000000cT0O
0000000000000CT5
0000000000000c T8
000000000000 Ccfd
0000000V CcTe
0000000000000d00
0000000000000d05
0000000000000d08
000000000 dad

psb
tsc
cbr
psbend
tsc

cbr
tip
tnt.8
tip
tnt.8
tnt.8
tip
tnt.8
tip
tnt.8

4delefd6cbc
1f

4elef8aftb9o

1c

oooooo

| findstr /V pad | more

TadlLO5S

Outro

Conclusion

Evoloutionary algorithms have a lot to offer for automation
— https://github.com/talos-vulndev/

Initial investment in development pays dividends
— Use correct engine for long term deployment
— Designing tracing engines is not for everyone

Hardware tracing is approaching software performance

This code is opensource software
— https://github.com/talos-vulndev/

Thank You!

blog.talosintel.com
@talossecurity

@richinseattle
rjohnson@ moflow.org

IIr
CISCO.

